Low-resistive vibratory penetration in granular media
نویسندگان
چکیده
Non-cohesive materials such as sand, dry snow or cereals are encountered in various common circumstances, from everyday situations to industry. The process of digging into these materials remains a challenge to most animals and machines. Within the animal kingdom, different strategies are employed to overcome this issue, including excavation methods used by ants, the two-anchor strategy employed by soft burrowers such as razor-clams, and undulatory motions exhibited by sandfish lizards. Despite the development of technology to mimic these techniques in diggers and robots, the limitations of animals and machines may differ, and mimicry of natural processes is not necessarily the most efficient technological strategy. This study presents evidence that the resisting force for the penetration of an intruder into a dry granular media can be reduced by one order of magnitude with small amplitude (A ≃ 10 μm) and low frequency (f = 50 - 200 Hz) mechanical vibrations. This observed result is attributed to the local fluidization of the granular bed which induces the rupture of force chains. The drop in resistive force on entering dry granular materials may be relevant in technological development in order to increase the efficiency of diggers and robots.
منابع مشابه
A Resistive Force Model for Legged Locomotion on Granular Media*
Compared to agile legged animals, wheeled and tracked vehicles often suffer large performance loss on granular surfaces like sand and gravel. Understanding the mechanics of legged locomotion on granular media can aid the development of legged robots with improved mobility on granular surfaces; however, no general force model yet exists for granular media to predict ground reaction forces during...
متن کاملIntrusion rheology in grains and other flowable materials.
The interaction of intruding objects with deformable materials arises in many contexts, including locomotion in fluids and loose media, impact and penetration problems, and geospace applications. Despite the complex constitutive behaviour of granular media, forces on arbitrarily shaped granular intruders are observed to obey surprisingly simple, yet empirical 'resistive force hypotheses'. The p...
متن کاملControlled preparation of wet granular media reveals limits to lizard burial ability.
Many animals move within ground composed of granular media (GM); the resistive properties of such substrates can depend on water content and compaction, but little is known about how such parameters affect locomotion or the physics of drag and penetration. Using apparatus to control compaction of GM, our recent studies of movement in dry GM have revealed locomotion strategies of specialized dry...
متن کاملNumerical investigation of soil plugging effect inside sleeve of cast-in-place piles driven by vibratory hammers in clays
During driving sleeve of cast-in-place piles by vibratory hammers, soils were squeezed into sleeve and then soil plugging was formed. The physic-mechanical properties of the soil plug have direct influence on the load transmission between the sleeve wall and soil plug. Nevertheless, the researches on this issue are insufficient. In this study, finite element and infinite element coupling model ...
متن کاملThe Concentration’s Influence of the Abrasive Granules Particles on the Vibratory Finishing Optimization
The already initiated studies are based on size and forms of abrasive grains, but few studies have addressed the influence on the concentration of abrasive grains. This research has been done to remove some of the mysteries associated in the media "abrasives" or "chips" used in vibratory and barrel finishing, this process included within the functions and characte...
متن کامل